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Boundary conditions at rigid boundaries

Staircase-shaped boundary
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When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.
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When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

Finite elements? Expensive...
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When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

Finite elements? Expensive...
Better interpolation in frames of FD? May be instable...
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Boundary conditions at rigid boundaries
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When the grid is not aligned with the model boundary, boundary conditions
become difficult to prescribe.

Finite elements? Expensive...
Better interpolation in frames of FD? May be instable...
Variational methods ? We can try...
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Discretized derivatives

Particular discretisation for derivatives near the boundary

Boundary conditions are introduced into the model by a particular discretization
of operators near the boundary.
To avoid instabilities, we control both BC and their approximation.

Integer nodes
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where α1 and α2 are the control coefficients.

Derivatives are allowed to change their properties near the boundaries in order to
find the best fit with requirements of the model and data.
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Nucleus for European Modelling of the Ocean (NEMO):
Rectangular Box Configuration

30
◦ × 20

◦ rectangle with
1

4

◦
resolution and 5 z levels.

120× 80× 5 nodes in (x, y, z) coordinates, 64 time steps per day.
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B = 2, Double gyre
B = 1, Single gyre

(u⊥, ω)Lateral Boundary = 0 (Impermeability and Free-Slip conditions)
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Single Gyre Forcing, Impermeability and Free-Slip conditions

Aligned grid and rotated grid

SSH on the aligned grid SSH on the 45◦ rotated grid.
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Control coefficients
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Рис.: 45◦ rotated grid
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Data Assimilation

The model: x(t) =M0,t(x(0), α) with x = (u, v, T, S, ssh)T

Cost function J

J = 10−4(‖x(0)− xbgr‖2 + ‖α− αbgr‖2) +

+

∫ T

t=0
t

∫ ∫
(u− uref)

2 + (v − vref)
2 + (ssh− sshref)

2dxdydt

Layout:

Joint control of the initial point x(0) (interpolation errors) and the set of α;
Artificially generated data by the same model on the aligned grid;
Data Assimilation over the 50 days window;
Analysis of the solution on the 8 years interval.

Minimization is performed by M1QN3 (JC Gilbert, C.Lemarechal);
Adjoint is generated by Tapenade (Ecuador team, INRIA).
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Single Gyre Control: 45◦ rotation, SSH

Reference, Optimal and Conventional BC 800 days later

Reference SSH Rotated grid conventional BC SSH

Rotated grid Optimal BC SSH
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Double Gyre forcing

Reference, Rotated, Optimal SSH 10 years average.

Aligned Grid Conventional BC, Rotated (30◦) Grid

Optimized BC, Rotated (30◦) Grid
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Optimal Boundary Conditions: 45◦ rotation

Single gyre, α1, α2

Derivatives in x Derivatives in y
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Control coefficients: 45◦ rotation
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Рис.: 45◦ rotated grid

ωa = ∂v
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∂y
− 0.8

u+ v

h
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"Optimal"configuration
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Variable R30◦ : −h ≤ R30◦ ≤ 5h.
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Optimal boundary is curvilinear
with R = −h/

√
2

Variable R30◦ : −h ≤ R30◦ ≤ 5h.

The Radius depends on the grid resolution h.
Does this curvilinear boundary remains optimal on different resolutions?
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Single Gyre Control: 45◦ rotation, 1◦/2 resolution

Reference, Optimal and Conventional BC 800 days later

Reference SSH Rotated grid conventional BC SSH

Rotated grid constant R = −h/
√
2 BC

SSH
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Single Gyre Control: 45◦ rotation, 1◦/8 resolution

Reference, Optimal and Conventional BC 800 days later

Reference SSH Rotated grid conventional BC SSH

Rotated grid, constant R = −h/
√
2 BC

SSH
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ORCA-2 Model

Layout:

NEMO, Global ocean model, 2◦ resolution, 31 layer;
ECMWF data issued from Jason-1 and Envisat altimetric missions and
ENACT/ENSEMBLES data banque;
Data Assimilation during 10 days interval;
Analysis of the distance “model–observations"on 1 month interval

Distance “model–observations"
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ORCA-2 Model

Layout:

NEMO, Global ocean model, 2◦ resolution, 31 layer;
ECMWF data issued from Jason-1 and Envisat altimetric missions and
ENACT/ENSEMBLES data banque;
Data Assimilation during 10 days interval;
Analysis of the distance “model–observations"on 1 month interval

SSH, North Atlantic, January, 31, 2006.

Optimal Initial Conditions. Optimal BC at the bottom.
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Conclusion

Boundary Conditions influence is important

Optimal BCs allows to correct errors committed by the discretization
The model is closer to the reference one with optimal BC
Data assimilation allows to get an optimal position and form of the
boundary

BUT

As well as for any adjoint parameter estimation
The control may violate the model physics;
The physical meaning of the optimal boundary is difficult to understand;
The set of α is not unique;
The problem of identifiability is not addressed yet;
The problem of stability is not even posed.

Consequently:

It is not a parameter estimation study, but
a way to compensate model errors
showing the most influent parameter.
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Thank you

Another result of the Russian-French cooperation

2001 2015
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