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Remarkable Scientist

Gury Marchuk
From Wikipedia, the free encyclopedia

Gury Marchuk Born 8 June 1925
Petro-Khersonets, Orenburg Governorate,
USSR Died 24 March 2013 Nationality
Russian Alma mater

Leningrad State University Thesis (1957)
Gury lvanovich Marchuk (Russian: lN'ypui
MBaHoBMY Mapuyk; 8 June 1925 - 24
March 2013) was a prominent Soviet and
Russian scientist in the fields of
computational mathematics, and physics
of atmosphere.!Xl Academician (since
1968); the President of the

USSR Academy of Sciences in 1986—-1991.
Among his notable prizes are the

USSR State Prize (1979), Demidov Prize
(2004), Lomonosov Gold Medal (2004).




Remarkable Coincidence
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Outline

* Examine: Why/How do large scales lose
predictability?

1) Adjoints + Predictability=Singular Vectors

2) Rational approach to ensemble

3) Fraternal twin experiments

4) Singular vectors vs cascade



Unaccounted Influence of Marchuk

English versions of

work in book appears - . ,
in 1980’5 Adjoint Equations and Analysis

of Complex Systems

Dan Cacuci analyzes
Climate Sensitivity
using adjoint
methods

Use in Variational
Data Assimilation

Use in Generalized
Stability and
Ensemble Prediction




1. Adjoint Operators and
Predictability



The ECMWEF approach to the
simulation of initial uncertainties

MOST DANGEROUS DIRECTIONS

Perturbations pointing along
different axes in the phase-space
of the system are characterized by
different amplification rates. As a
consequence, the initial PDF is
stretched principally along
directions of maximum growth.

t=T1

The component of an initial o
perturbation pointing along a
direction of maximum growth
amplifies more than a component
along another direction .




Singular vector definition:
the linear equations

Consider an N-dimensional nonlinear system:

0
= A
ot

Denote by z” a small perturbation around a time-evolving trajectory z:

07’ : 0A(z,t)
—=A(z,1)z A(z,t)= i
ot (&0 (&0) 0z |.
07

— = A(z,t

Y (2,1)

The time evolution of the small perturbation z’ is described to a good degree of
approximation by the linearized system A/(z,t) defined by the trajectory.



Singular vector definition:
the linear propagator

The perturbation z” at time t is given by the time integration from the initial state
Z’(t=0) of the linear system:

t
() =2+ [ A(z.9)ds
0
The solution can be written in terms of the linear propagator L(t,0):

Z'(t) = L(t,0)z,

The linear propagator is defined by the system equations and depends on the
trajectory characteristics. The E-norm of the perturbation at time t is given by:

2 =< 2/(1); B (£) >=< L(1,0)z}; EL(1,0)z} >



Simulation of initial uncertainties:
the singular vector approach

The problem of the computation of the directions of maximum growth of a time
evolving trajectory is solved by computing the singular vectors of K=EY/2LE, /2, i.e.
by Rayleigh-Ritz equivalent to solving the following eigenvalue problem :

-

EVLELE;?v=0% q}

By definition, the singular vectors depend:
— on the initial and final time metrics E, and E;
— on the linear propagator L(t,0);
— on the time-evolving trajectory along which they are computed;
— on the optimization time interval.



In Ensemble Weather Prediction:
Singular vectors and Bred vectors are used

Basic state
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Singular vectors are the fastest growing structures into the future
Bred vectors are the fastest growing structures from the past.

Prediction of a nascent (SV) or mature (BV) probability density
SVs are EOFs of unstructured initial errors

BVs are EOFs of structured initial errors

SVs evolve toward BVs



2. A Rational Approach to
Ensemble Prediction

Not Just the "Most Dangerous’
Degrees of Freedom



The probabilistic approach to NWP:
ensemble prediction

A complete description of the
weather prediction problem can be
stated in terms of the time
evolution of an appropriate
probability density function (PDF).

Ensemble prediction based on a

finite small number of deterministic
integrations appears to be the only
feasible method to predict the PDF
beyond the range of linear growth.

We must be strategic in sampling

to capture the most important parts
of PDF evolution

Temperature Temperature

PDF(0)

PDF(t)

reality

B

Forecast time



Probabilistic view of Predictability
with a Hydrodynamic analogy

Given a linearized dynamical system
dx/dt=f(x,t)=Ax =V (x,t)

Consider the evolution of

a density of states  p(x,¢)

Liouville equation  dp/dt+V*(Vp)=0

Initially, p(x,0) is a tight distribution that dynamically broadens in time
For short time uncertainty is small and linearity of deviations is reasonable

For time order At Singular Vectors = Eigenvectors of the Rate of Strain Tensor for V
For a linear system SV'’s are EOF's of the PDF at t=T,, and t=T;,,



Operational Singular Vectors

500hPa Initial State
12 UTC 17 January 1987

Fig. 1. 500 hPa geopotential height field at
17.01.1987 (contour isolines every 160 m).

12 UTC,

Six leading Singular Vectors
Note small scale and local nature

COMPUTATION OF OPTIMAL UNSTABLE STRUCTURES 3

SINGULAR VECTOR NUMBER: 1 SINGULAR VECTOR NUMBER: 4

SINGULAR VECTOR NUMBER: 3 SINGULAR VECTOR NUMBER: 6

Fig. 3. Level-11 streamfunction of the first six SVs optimized over 24 h (increasing SV number from top-left t
bottom-left, from top-right to bottom-right). The SVs are normalized to have unit total energy norm.



Sensitivity of growth rate to

AMPL FACTOR

optimization time
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Fig. 2. Amplification factors for the SVs optimized over
a 12-h, 24-h and 36-h time interval. The amplification
factors are sorted in decreasing order.



Some (second) thoughts
on selective sampling

» Reduced sampling is ONLY efficient if one is interested in a few gquestions only
(e.g. sample initial uncertainties dominating forecast error growth defined in
terms of total energy during the first 2 days).

* Reduced sampling based on singular vectors (ECMWEF) is valid only in the linear
regime, requires a tangent forward and adjoint model. SV perturbations are metric
sensitive.

* Reduced sampling based on breeding vectors (NCEP) is easier to implement, less
expensive, but it does not emulate the scale-selective effect of observations during
the analysis cycle.



EXAMPLE: distribution bias

T(50)anomaly [K] 19991204-20000229 STEP 144
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freq/expected freq

Ideally histogram 1s flat. Wings are over-populated.
Predicted distribution too tight.



3. Fraternal Twins

a natural way to study predictability
error growth

Strategic Sampling
has built in bias that might
affect long term predictability



KE spectrum fraternal twin experiments

T180 (1.5°) resolution GCM=Truth
Leaving RESOLVED initial state unchanged
gradually coarsen resolution

KINETIC ENERGY SPECTRA 500 mb

T63
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Figure 8: Same as Fig. 2, but for 2 different model truncatione. Gray shading ghows full spectrum change in 5 daye (gray = reduction
in energy)l. Dashed line labeled by ime in days shows growth in emor a2 measured by differencing the forecast with T170 run (truth)
a) T42 model, b) T3, o) T10G.



‘Streamfunction’ Spectrum fraternal twin

GEOPOTENTIAL HEIGHT SPECTRA 500 mb
T42 T63 T106
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Large scales dragged along by synoptic scales

Figure 7: Same a= Fig. 8, but for 500mb geopotential.



2D-Turbulence Closure Prediction:

Small scale saturation->inverse cascade of error

Closure theory shows limited predictability because of inverse error cascade

8/ days

N =

1
41
8

1 1 LI
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Figure 1: Growth of errors initially confined to smallest scales, according to a theoretica
model (taken from a paper by E. Lorenz presented in AIP Conf. Proceedings #106).
Horizontal scales on bottom; full atmospheric motion spectrum = upper curve.




Fraternal Twin 2D and
Quasigeostrophic Turbulence

Barotropic Model Quasigeostrophic Model

Both look more like the GCM and less like
the saturation inverse cascade picture



4. Singular Vectors and the
Inverse Cascade of Error

Putting the pieces
together



QG basic State and Error Snapshot

QG Model Active regions=regions of hydrodynamic strain
Instantaneous
Streamfunction
Instantaneous al *l%
Fraternal Twin ;N e

A o '
QGPV error field o e S o ﬁ




Error vs Leading SV

Active regions also regions of large amplitude in leading singular vector

E
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Lagrangian PV Dynamics means
Fluid Strain equates to Phase Space Strain



Conclusions

Use of Adjoint Sensitivity Analysis in Ensemble
Weather Prediction (evidence of Marchuk’s
strong and broad influence)

Probabilistic /Hydrodynamic interpretation of
Singular Vectors

Saturation/Inverse Cascade Ideas require
Modification

Singular Vectors for Analysis of Information
loss



The End

Thank-you
and
Questions?



EXTRA SLIDES



Nonlinear terms can only conservatively exchange energy
Spectral properties can be gotten by dimension analysis

[E(k)] = L3T 2

€] = L2T—* and [k]=L71

SO

E(k) = C1=*/%k /3

for some universal 7 of order 1.



Real Model Error-Random Variety

Random Errors - Resolution and Flat Topography
T error at day 0 T error at day 1/4
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500 mb GECPOTENTIAL

Decomposition in space at t=0

negative difierence; black dots are locations referred to in tewxt.

positive difference; dashed

10mi saolid

Figure 3: Difference field of 500 mb geopotential at initial tme for 1 pair of ensemble members shown in Fig. 2.

Contour interval



Growth after one day

.
500 mb GEOPOTENTIAL  (a) ﬁ » ALL DAY 1
Y ',.:Qn;t_-‘ -I-. -

Figure 4: Same as Fig. 3, but for 1 day forecast.



Spatial growth at

500 mb GEOPOTENTIAL

Figure & Same as Fig. 3. but for 3 day forecast. Cl = 20m

DAY 3



Error Growth is ‘almost’ linear- use this

Singular Vectors, Generalized stability Pseudo-eigenanalysis

e Linear theory: singular vectors

. L _F(7,1)

e  T(0)=Xpor T(0)= Xo+eX;

. 2 solutions To(t) and Ty (t); Let Z'(t) = 7 1(t) — Tolt).
. 2 = A(t)Z with A= ag(” 0, 1)

. and Z(0) = X,. Z(t) = R(t)Z(0).

. SV's are Zleading eigenvectors of R(t)R!(t)

By Rayleigh-Ritz also are vectors with maximal growth in energy norm
BVs build the initial error covariance into the norm



Outline

Review the basics of 3D vs 2D turbulence and its
QG partner

Constraints and self-consistency of QG
Beyond QG to Nastrom-Gage range
Some high resolution studies

How to break QGT and get N-G spectrum

Potential predictability and modeling implications
and other stuff going on in the atmosphere



Conclusions

e Cascade paradigm mnappropriate for predictability

e Singular vector growth
e Modal growth in QG, not in 2D

e Threshold nonlnearity in ‘real’ models

Two questions of a mathematical nature:
Is there a maximum principle for predictability?

Can state dependent error growth bounds be useful?



Recall the cascade concept of 3D
turbulence

Kolmogorov (1941) theory
E(k) 4

/

/1

|

|

|

|

|

|

|

| |
|

k_F k_D
For 3D, statistically steady, homogeneous, isotropic turbulence, in an
inertial range:

At wavenumber k, the only dimensional quantities are the energy

throughput £ and k& itself.



QG simple enough to dynamically analyze predictability

Singular Vectors, Generalized stability Pseudo-eigenanalysis

e Linear theory: singular vectors

. % = ?(T t)

. T(0)=Xgor T(0) = Xo+eX,

. 2 solutions To(t) and Ty (t); Let Z'(t) = 7 1(t) — Tolt).
. Then d;‘: = Alt)Z with A= 3—7(70 t)

. and Z(0)= X. Z(t) = R(t)Z(0).

. SV's are =leading eigenvectors of R(t)R'(t)

By Rayleigh-Ritz also are vectors with maximal growth



Atmospheric spectrum inspired
by two-dimensional turbulence

Some time scales:
Teddy~ (E(k)k3) 172

Trossby~ k/ B

Rhines scale
Length at which:

Teqay =T

Rossby

-5/3 range Tyq,~k2?
-3 range Tg44,~ CONst
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Wavenumbers near 10 correspond
to both the Rhines scale and the
injection scale. Energy cascade to
Large scales is inhibited by
Rossby wave motion .

Few Rossby wave resonances
and few wavenumbers



Can we explain the Nastrom & Gage
Spectrum?

Wavenumber (radians m—1)
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How do things change in 2D?
Nonlinear terms conservatively exchange
both energy and enstrophy

Two dimensional turbulence

In 2D turbulence we have another conservable quantity, the
enstrophy, and therefore a cascade of enstrophy 1.

Typically energy now cascades upscale while enstrophy cascades
downscale.

E(k) 2

——

V
—

0 k_F k_D



In 2d turbulence the enstrophy
conserving range gives:

[E(k)] =L°T~

MI=T%  and [k]=L"

So E(k)= C,n23k3



How do we decide direction?
Use a variant of Fjortoft Theorem

Energy upscale, enstrophy downscale (mostly)

Let
E =/E(ﬁ:}dk and Z = fkgE{ﬁ:}dﬁc

Suppose enerqgy is initially concentrated near wavenumber k; and
subsequently spreads out, so that

il
— [ (k—=E)2E(EYdE > 0
o ( 1)°E(k)dk >

The fact that E and Z are conserved (neglecting viscosity) implies

d (J’A;E(kjd;:) i
it \ [E(k)dk ) =




The Spectral Enstrophy transfer is then
constrained as follows:

Similarly, assuming

% /{kg — ki)?E(k) dk > 0

implies

d (kaZ{I:;]dk) >0

dt \ [ Z(k)dk



On to QGT : Summary of Mid-latitude QG theory
beta plane (dx=a cos(®)dA, dy=a d®)

u, — fv+ o, = —(uu, + vuy, + wu,),

v + fu+ oy = —(uve + vuy + wup),

. , , . w ,
Ope + S(pw = —(u, + vPy, + Wy, + ;(l — K)dp),
ur + vy + wp = 0.

We non-dimensionalize the equations to i1solate the scales we are interested
in: (z,y) = L(z',y'),p= Fop/.t = fi't', (u,v) = U(u'.v"),w = %I’gw’, where
the quantities U, L, Py, fo are 'typical’ values of the wind velocity, horizontal
length scale, pressure depth and Coriolis parameter of midlatitudes weather
systems. If we rewrite the governing equations in terms of the prime (non-
dimensional) quantities ;we get:

. 3L
U — vV + 0r = —Ro(uur + vuy + wup) + —yv,
0
. BL
vttt Gy = —Rouvy +vuy + wey) = Z=yu,
0

(.bpt + Bw = —RO(UQI + U(?y + wd’P‘P + %(l o K)d)p)’

u, + vy +w, =0,



Scaled equations have several small terms

Rossby number R_=U/(f,L) is ~0.1

If Lis restricted so that L<<a then BL/f, is also
~0.1

Burger number B=S(p)P,/(f,L)* is order 1
Perfect for asymptotic expansion in R,

Expand all dependent variables in a series in
powers of R, and match powers



At order zero we get a linear system
constant coefficients

uy — v 4+ o2 =0,

§
[

' u? 4 r.':i'f =3}

2
&% + Bw® =0,
j !

D, .0 0
uy + vy +wy = 0.

The solution can be given as a superposition of
inertia gravity waves and vortical modes

with frequencies ) s 212
o, =x(f"+gH,(k” +1))

for inertia gravity waves and
0,70 for vortical modes



At 15t order restrict motion
to slow time scale:

Nonlinear QG equations
q,+JW,q) =0,
q=Vy+(/Sy,, =Ly
y,=0
p=0,p,

Similar to two—dimensional non-divergent governing
equations. Isomorphic if variation in p is ignored and:

q=Vy

Note: We also get diagnostic equation for divergence
The QG omega equation  Lw=F

Vza)+(f2/S)a)pp =F(y)



Quasi-slow manifold and QG turbulence

q +J(Z/J,Q)=O,
q=Vy+(fINW. =Ly

Fjortoft Constraints

Total Energy E = —f(szp)dV !

Pot. Enstrophy EN =f(Ll/J)2dV Cy
Lo, ==, g, A LLL L
E
lp = Ean(pn, E = E‘an 2Cn2

2 2
Lete, =‘an‘ c,

Cannot maintain balance if

, Energy moves toward large n
k= Een and EN = Ecn € Energy cannot be cascaded
to small scale



Implications of QG Turbulence

Potential Vorticity analog of 2D vorticity

Potential Enstrophy cascaded to small scale with
zero flux of total energy (KE+APE)

Total energy spectrum a k3

Ro(L)= (Enstrophy)”/f= constant

Ri(L)-> o= as L->0

No new instabilities

QGT unbreakable down to 3D isotropic scales
Energy containing eddies QG ->all scales QG



How can we then explain the
Nastrom & Gage Spectrum?

Wavenumber (radians m—1)
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Some possibilities
(that could work)

Inverse cascade of balanced turbulence due to
injection of energy by small scale convection
(Gage, Lilly)

N2 scaling (Kimura and Herring)

Stratified Turbulence (Lindborg)

Surface geostrophic dynamics at the
tropopause (Tulloch and Smith)



Height dependence
of the spectrum (SGT?)

CLIMATOLOGY
CAMS3.1/HOMME APE_250mb
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Links to limited area modeling

Examine band limited
Predictability.

Only permit errors in
Large/Small scales

CONTROL
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Compensated Kinetic Energy

10*
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HOMME and Spectral
results (Taylor and Williamson)
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Dry hydrostatic dynamics
Held-Suarez forcing

CLIMATOLOGY
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Kinabe Energy Par Linit Mass Par Wavanumbar Ifr'l"'lz 5_:I
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Earth Simulator

Takahashi et al tuned viscosity
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HS forcing height dependence and
comparison with aqua planet
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QGT no longer dominant for L<100km
What is going on?



Restrict motion to slow time scale:
Nonlinear QG equations

q,+J@,q)=0,
q=Vy+(/Sy, =Ly
p=0,p,

Similar to two—dimensional non-divergent governing
equations. Isomorphic if variation in p is ignored and:

q=Vy

NB: We also get diagnostic equation for divergence
The QG omega equation  Lw=F

Vio+(f* /8w, = Fyp)




Hypothetical Curved Slow Manifold

Question: How is G(R) spectrally distributed?



QG Turbulence
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Balanced Divergent Wind spectrum
from QG
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What (I believe)
may be going on

Divergent wind spectrum -5/3
Due to balanced gravity waves

Collision course breaks QG
dynamics: vort & div same size.

Not part of QG or balanced
ordering

Divergence amplified by moist
processes

Transition moves upscale

Pathway to isotropy and 3D
turbulence

KE dissipation increases thru
forward cascade
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Some un-answered questions?

What actually happens in the atmosphere ?

Can we t
Will prec

neorize without QG turbulence?
ictability estimates change?

How QG]

" dissipate?

Are we parameterizing subgrid momentum
exchange correctly? (Stochastic, bottleneck)

How will

modeled climate change with mesoscale

variability?

What is t

he role of moisture?



Rapid error growth in a turbulence closure

inverse cascade

8/days

N =
N
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Figure 1: Growth of errors initially confined to smallest scales, according to a theoretical
model (taken from a paper by E. Lorenz presented in AIP Conf. Proceedings #106).
Horizontal scales on bottom; full atmospheric motion spectrum = upper curve.

Lorenz proposes
3 ways to estimate
Predictability

1) Model experiments
2) Analogues
3) Turbulence closure

All imperfect

Example of closure
model



Moisture:Convectively Coupled
Equatorial Gravity Wave spectra

Eastward Westward
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Zagar et al (2009)



Climate Simulation in HOMME

T™Q kg/m2




The End

Thank you for your attention
Questions?



Recall:
QG equations with constant f

q, +J(Z/J,Q)=O,
g=Vy+(f*/Sy, =Ly
, =0
p=09ps

Note similarity to two—dimensional non-divergent governing
equations. Isomorphic if variations in p is ignored and:

q=Vy



Nastrom & Gage Spectrum
The real atmosphere not 2D or 3D
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Atmospheric spectrum
from analyzed data

. A
Some time scales: T 0 | / NG e
, Nf / | ~
TeddyN (E(k)k3)1/ E ¥ P | h
g 1071/ 3|
g . \\
Trossb ~k/B E '! '
ossby = A I \_
Rhines scale 1 w;fmmw 100 150
Length at which:
_ Wavenumbers near 10 correspond
Teayy = Trossby to both the Rhines scale and the
injection scale. Energy cascade to
Large scales is inhibited b
-5/3 range T4, ~k/3 & . Y
Y Rossby wave motion .
-3 range T.qq4,~ CONSt

Few Rossby wave resonances
and few wavenumbers



Climate Simulation in HOMME
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What we think
IS going on

Divergent wind spectrum -5/3
Due to balanced gravity waves

Collision course breaks QG
dynamics: vort & div same size.
Not part of QG ordering

QG cannot be broken by small
scale Rossby number

Divergence amplified by moist
processes

Transition moves upscale

Pathway to isotropy and 3D
turbulence

KE dissipation increases thru
forward cascade

CLIMATOLOGY
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Predictability: How long can we accurately
predict this?

Water
Vapor
Channel

Chris Velden (U.Wisc/CIMSS)

‘Prediction is hard-especially into the future’
Attributed to Neils Bohr



Evolving 2D Turbulence:
simplest example
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Evolving 2D Turbulence:
simplest example
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Backscattered vorticity tendency:
fraternal twin
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Important difference between
2D and 3D turbulence

2D turbulence

Enstrophy cascade [n]=T3
[E(k)] =L3T2

E(k)= C,n%3k3

T2 =[E(k)]/L® =k> [E(K)]
T(k)~Constant

Errors from small scale take
longer and longer time to
reach large scale (algebraic)

3D turbulence

Energy cascade [g]=L*T3
[E(k)] =L3T2

E(k)= C,e%/3k™>/3

T2 =[E(k)]/L> =k3 [E(K)]
T(k)~const x k2/3

Errors from small scale take
a fixed time to reach large
scale

Butterflies take a long time to influence large scale 2D weather
Too long compared to forcing at other scales



Can we describe this as two
dimensional turbulence?

g—

Water e L
Vapor s
Channel

o
T
>

] ‘.f 8 :'_\. 4 i N
> — - ‘
il cmmmaneie
= - — ‘, . o

——

Horizontal turbulence in mid-latitudes
Atmosphere a thin fluid D/L<<1

Chris Velden (U.Wisc/CIMSS)



EXAMPLE: Spectral models and erroneous
small scales

Schematic GFD energy spectrum
with cutoffs Simplest closure

Z(k) =L, Z(j)+ Ny, Z())Z(m)
X(k)=2Z(k); k<K

Y(k)=Z(k); k>K

X =M(X,Y)

X =~ P(X) + (noise)?

Dynamics of Y(k)’ s conditionally
dependent on X(k)’ s



Evolving 2D Turbulence:
simplest example
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Backscattered vorticity tendency:
fraternal twin
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Probabilistic/Stochastic view of
Predictability

Given a random dynamical system

% = £(x,1)+ DW

Consider the evolution of
a density of states p(X,1)

Fokker-Planck equation op/dt+Vo(fp)=DV’p

Singular vectors represent the time adjustment of the FP equation
Bred vectors effects of the initial state p(x,0)



How to get to quasi-geostrophic model

Start with Primitive Equations
In Non-dimensional Form

. ) . AL
Uy — U+ 0y = —R(uug + vuy, + wu,) + —ﬂyv,

f

. : . BL
Ve + U+ Py = —RDLUEJI + vy +Wilp) — f—yu,
0

- o ) ) W, ,
Ppt + Bw = —Ro(ugs + vdy + wopp + ELI — K)idp),

Uy + vy wy =0,

R=U/fL the Rossby Number
B=D(N/fL)**2 the Burger Number

For small Rossby Number Asymptotic
Expansion and Resonance Condition
Gives:

— T, (up+uy —v' + 62 — NL), — Fyn”)+
(v + 2y +u' + q:'«‘;. —NL} + Eyuﬂ)+
B~ (¢gr + ¢pe + Buw' — NLJ),

which vanishes for any arbitrary scalar function II{z, y, p). The standard trick
of integration by parts is performed in order to move the spatial derivatives
on II to the field variables (u, v, ¢). Recalling that the resonmant terms are
those involving ONLY the rotational modes, the vanishing of the integral
requires:

d d o v 0 _ 3

- _ =V .V — Bu..

577 T a7¢ g VI — B,
0

where Fg = [—:,:33, ¢2) and ¢° = ¢, + q:}gy + [%}p. To avold linear growth

in the fast time, t, equate the 2nd term on the left with the whole RHS and

q,+J,q)=0

Same form as 2D vorticity equation. Invert 3D elliptic operator



Important difference between
2D and 3D turbulence

2D turbulence

Enstrophy cascade [n]=T3
[E(k)] =L3T2

E(k)= C,n%3k3

T2 =[E(k)]/L® =k> [E(K)]
T(k)~Constant

Errors from small scale take
longer and longer time to
reach large scale (algebraic)

3D turbulence

Energy cascade [g]=L*T3
[E(k)] =L3T2

E(k)= C,e%/3k™>/3

T2 =[E(k)]/L> =k3 [E(K)]
T(k)~const x k2/3

Errors from small scale take
a fixed time to reach large
scale

Butterflies take a long time to influence large scale 2D weather
Too long compared to forcing at other scales



Singular vector analysis of fraternal twin
error growth

Singular vectors

vorticity errors

QG model Error
State growth
Error Leading
growth SV

Rapid growing structures organize the stochastic backscatter



Rationale

Why examine flatland (2D/QG) turbulence 7

DYNAMICAL MODEL OF ATMOSPHERE

e Theory : cascades.energyv-enstrophy, scale interactions
e Practice: Atmospheric spectrum matches theory

e Test: Predictability: Can small scales contaminate weather prediction?

"In theory, there is no difference between theory and practice.

But, in practice, there 1s.” — Jan L.A. van de Snepscheut




