Uncertainty in Decadal Predictions Resulting from Imperfect Knowledge of the Initial Conditions

Grant Branstator Haiyan Teng NCAR

Initial Value & Forced Predictability

Time

Predictability Measures

Mean Square ErrorRelative Entropy $MSE = \frac{1}{K} \sum_{k=1}^{K} \left[(\frac{1}{M} \sum_{m=1}^{M} (s_k^m - \overline{s}_k)^2) / \sigma_k^2 \right]$ $R = \int_{S} P_e(s) \ln \left[\frac{P_e(s)}{P_c(s)} \right] ds$

where S_k^m is PC k of ensemble member m

bits of information

Example

Ocean Heat Content

Time

Branstator & Teng (2010)

Need a more complete analysis of predictability

Lorenz 3-component model

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= \sigma(y-x), \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= x(\rho-z) - y, \\ \frac{\mathrm{d}z}{\mathrm{d}t} &= xy - \beta z. \end{aligned} \qquad \rho = 28, \ \sigma = 10, \ \beta = 8/3 \end{aligned}$$

Predictability and Power Spectra Redness

For $\dot{s} = -\alpha s(t) + \xi(t)$ with Gaussian white noise ξ $\sigma_c^2 = \sigma_{\xi}^2 / 2\alpha$ $cor(\tau) = exp(-\alpha\tau) = exp(-\tau/T_d)$ $\frac{\sigma_e^2(\tau)}{\sigma_c^2} = 1 - exp(-2\alpha\tau) = 1 - exp(-2\tau/T_d)$

> atmos: T_d =roughly a week OHC: T_d =couple of years

Also note that T_d increases for time averages of such a process. (Griffies&Bryan 1997; Munk 1960)

Predictability and Power Spectra

Predictability depends on many factors

- Initial state dependence
- System-component dependence
- Time-scale dependence
- Pattern dependence
- Model dependence

Predictability depends on many factors

- Initial state dependence
- System-component dependence
- Time-scale dependence
- Pattern dependence
- Model dependence

Alternative methods for estimating initial value predictability

Predictability from Control Runs

Predictability from Control Runs

Application to Ocean Heat Content

Year of Nominal Predictability Limit

multivariate regression method

T0-300

Comparing Predictability of AMOC and N Atl Heat Content

Predictability of 5- & 10-year means CMIP5 Models

Average Power Spectra AMOC & N Atl Heat Content 9 CMIP5 models

Predictability of 5- & 10-year means CMIP5 Models

Are some components of AMOC especially predictable?

*predictable component analysis (Renwick & Wallace, 1995)

Most Predictable AMOC Pattern CNRM-CM5

Most Predictable AMOC Pattern GFDL-CM3

Average Power Spectra of Most Predictable AMOC & Heat Content Patterns 9 CMIP5 models

Good news

- about 5-10 years of initial value predictability for OHC
- even more for
 - \diamond time averages
 - \diamond special patterns
 - \diamond certain initial conditions
 - \diamond certain regions

Bad news

Models do not agree, so little is known about Nature's predictability

275m heat content in NAtl subpolar gyre

Yeager et al. 2012

Predictability of Most Predictable Patterns for AMOC, SLP_{NH} , TAS_{NH} , TAS_{NH} land

(predictable component analysis)

Global mean surface temperature

(Bindoff, Stott, et al., 2013, IPCC AR5 ch. 10)

Global mean surface temperature

(Bindoff, Stott, et al., 2013, IPCC AR5 ch. 10)

Predictability and Power Spectra Peaks

Predictability of CMIP5 Models annual means

Attractor average

Branstator & Teng (2014)