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Variational data assimilation for a sea dynamics model

V. Agoshkov∗†, V. Zalesny∗, V. Shutyaev∗‡, E. Parmuzin∗‡, and N. Zakharova∗

Abstract — The 4D variational data assimilation technique is presented for modelling the sea dynam-
ics problems, developed at the Marchuk Institute of Numerical Mathematics of the Russian Academy
of Sciences (INM RAS). The approach is based on the splitting method for the mathematical model
of sea dynamics and the minimization of cost functionals related to the observation data by solving
an optimality system that involves the adjoint equations and observation and background error covari-
ances. Efficient algorithms for solving the variational data assimilation problems are presented based
on iterative processes with a special choice of iterative parameters. The technique is illustrated for the
Black Sea dynamics model with variational data assimilation to restore the sea surface heat fluxes.

Keywords: Sea dynamics modelling, variational data assimilation, observations, sea surface temper-
ature
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Comprehensive monitoring of the main features of natural environment and climate,
which is important both for everyday life and for reducing the consequences of
natural and man-made disasters, requires a new effective methods and algorithms
for the variational assimilation of remote sensing data in atmospheric, ocean and
climate models to be developed for high-performance computing.

The data assimilation methods are widely used in geosciences to develop com-
putational technologies that combine the flows of real data and hydrodynamic fore-
casts using mathematical models. It received the greatest applications in meteoro-
logy and oceanography, where observations of the atmosphere and ocean are assim-
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ilated into atmospheric and oceanic models in order to obtain the initial or bound-
ary conditions and other model parameters for further modelling and forecasting
[6, 7, 11, 15, 16, 19, 22, 24].

The development of numerical algorithms for solving variational data assim-
ilation problems by optimal control methods using adjoint equations at the INM
RAS was initiated by Academician Guriy I. Marchuk [19]. This approach was the
main content of research of G. I. Marchuk and his scientific school at the INM RAS
in various fields of mathematics and applications [1, 4, 5, 19, 28]. This approach
allows, on a unified methodological basis, to solve the problems of initializing hy-
drophysical fields, assessing the sensitivity of a model solution, identifying model
parameters, etc. The main idea of the method is to minimize some functional that
describes the deviation of the model solution from the observational data, and the
minimum of this functional is sought on the model trajectories, in other words, in
the subspace of model solutions. The problem is formulated in a four-dimensional
space–time domain and requires the solution of a coupled system of direct and ad-
joint equations in forward and backward time, respectively.

Ocean general circulation models are based on nonlinear differential equations
describing the evolution of three-dimensional fields of currents, temperature and sa-
linity, as well as pressure and density [8, 10, 12, 23], and require the development of
efficient numerical methods for a long-time integration. The ocean hydrodynamics
INMOM model developed at INM RAS is described by primitive equations in the
sigma-coordinate system, which is solved by finite-difference methods [10, 27, 30].
Its numerical implementation is based on the method of splitting according to phys-
ical processes and spatial coordinates [18, 30], which allows us to split the complex
problem into a number of simpler ones and solve it in time using explicit or implicit
schemes.

This paper presents some results for solving the problems of variational data
assimilation, developed at the INM RAS last years. As an application, a mathem-
atical model of sea dynamics is considered with a block of variational assimilation
of data on sea surface temperature taking into account the covariance matrices of
background and observation errors. On the basis of variational assimilation of ob-
servational data, algorithms are proposed for solving inverse problems to restore
heat fluxes on the sea surface. The results of numerical experiments for the Black
Sea dynamics model are discussed.

1. Mathematical model of sea dynamics

We consider the system of equations of sea hydrothermodynamics in geograph-
ical coordinates under hydrostatics and Boussinesq approximations [20], with the
Lame coefficients for a spherical coordinate system [2], in the domain D of vari-
ables (x,y,z) for t ∈ (0, t̄):
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
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+
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f 0
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+(U,Grad)T +AT T = fT ,
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dt

+(U,Grad)S+ASS = fS

(1.1)

where U = (u,v,w) is the velocity vector, ζ is the sea surface level function,
T is the temperature, S is the salinity, u = (u,v), ρ1 (T,S) = ρ0βT

(
T −T (0)

)
+

ρ0βS
(
S−S(0)

)
+ γρ0βT S (T,S) + fP is the water density, Pa is the atmospheric

pressure, f = ( f1, f2) is the forcing, fT , fS, fP are the functions of the ‘internal’
sources, ρ0 = const ≈ 1 is the mean density, T (0) and S(0) are the reference val-
ues of temperature and salinity, βT S (T,S) is the sum of all other terms of the ex-
pansion of the function of state ρ = ρ (T,S), f3 ≡ f3 (x,y, t) is the function re-
lated to the tide-generating forces, βT ,βS,γ,g = const,Aϕϕ ≡ −Div

(
âϕGradϕ

)
,

m = 1/(r cosy),n = 1/r,r = R− z≈ R, Θ(z)≡ (R− z)/R≈ 1, R is the Earth radius.
The operators Aϕϕ ≡−Div(âϕGradϕ) involve âϕ = diag((aϕ)ii), where (aϕ)11 =

(aϕ)22 ≡ µϕ ,(aϕ)33 ≡ νϕ , and ϕ may take the values u,v,T,S. We assume that
µu = µv ≡ µ , νu = νv ≡ ν , and µ , ν , µT , µS, νT , νS are given positive bounded
functions. The fourth order operator (Ak)

2, with Ak taken for Aϕ = Ak, is defined
by the matrix k̂ = diag{kii} with nonnegative diagonal elements kii. By l = l(y) we
denote the Coriolis parameter l = 2ω siny, where ω is the Earth angular rotation
speed, and f (u) = l +musiny ≡ l + f1(u).

The boundary Γ≡ ∂D of the domain D is represented as a union of four disjoint
parts ΓS, Γw,op, Γw,c, and ΓH , where ΓS ≡ Ω is the ‘unperturbed’ sea surface, Γw,op
is the liquid (open) part of the vertical lateral boundary, Γw,c is the solid part of
the vertical lateral boundary, and ΓH is the sea bottom. The characteristic functions
(indicator functions) of the parts ΓS, Γw,op, Γw,c, and ΓH of the boundary Γ are
denoted by mS, mw,op, mw,c, and mH , respectively.

The unit outer normal vector to Γ is denoted by N ≡ (N1,N2,N3), with N =
(0,0,−1) on ΓS and N = (N1,N2,0) on Γw = Γw,op ∪ Γw,c, and n ≡ (N1,N2) ≡
(n1,n2) is the unit outer normal vector to ∂Ω. We assume also that |N3| > 0 on
ΓH . The components N1,N2,N3 are defined by the chosen parametric representa-
tion of the corresponding part of the boundary. For the velocity vector U = (u,v,w)
on the boundary Γ, the normal components are denoted by Un : Un = U ·N =

uN1 + vN2 +wN3. Below we put U (+)
n ≡ (|Un|+Un)/2, U (−)

n ≡ (|Un|−Un)/2, with
Un =U (+)

n −U (−)
n on Γ.
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We consider the equations (1.1) in D× (0, t̄) with the following boundary and
initial conditions [2].

Boundary conditions on ΓS:
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√
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√
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∂

∂ z
Aku = τ

(a)
x

/
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− k33

∂

∂ z
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/
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U (−)
n T −νT
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∂ z

+ γT (T −Ta) = QT +U (−)
n dT

U (−)
n S−νS

∂S
∂ z

+ γS(S−Sa) = QS +U (−)
n dS

(1.2)

where τ
(a)
x and τ

(a)
y are the tangent wind stress components along the axes Ox and

Oy, respectively, on the sea surface z = 0, and γT , γS, Ta, Sa, QT , QS, dT , dS are the
given functions. We have also Un|z=0 =−w|z=0, where w = w(u,v) is defined by the
formula

w(x,y,z, t) =
1
r

(
m

∂

∂x

( H∫
z

rudz′
)
+m

∂

∂y

(
n
m

H∫
z

rvdz′
))

, (x,y, t) ∈Ω× (0, t̄).

(1.3)
Boundary conditions on Γw,c (on the ‘solid’ part lateral wall):

Un = 0, AkŨ = 0,
∂Ũ
∂Nu
· τw +

(
∂

∂Nu
AkŨ

)
· τw = 0,

∂T
∂NT

= 0,
∂S

∂NS
= 0

(1.4)
where τw = (−N2, N1, 0), Ũ ≡ (u,v,0) ≡ (u,0),∂ϕ/∂Nϕ ≡ N · âϕ ·Gradϕ , ϕ =
u,T,S.

Boundary conditions on Γw,op (on the ‘liquid’ part lateral wall):

U (−)
n (Ũ ·N)+

∂Ũ
∂Nu
·N =U (−)

n d, AkŨ = 0

U (−)
n (Ũ · τw)+

∂Ũ
∂Nu
· τw +

(
∂

∂Nu
AkŨ

)
· τw = 0

U (−)
n T +

∂T
∂NT

=U (−)
n dT +QT , U (−)

n S+
∂S

∂NS
=U (−)

n dS +QS

(1.5)

where d, dT , dS, QT , QS are the given functions.
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Boundary conditions on the bottom ΓH :
w = um

∂H
∂x

+ vn
∂H
∂y

, AkŨ = 0,
∂T

∂NT
= 0,

∂S
∂NS

= 0

∂Ũ
∂Nu
· τx +

(
∂

∂Nk
AkŨ

)
· τx =

τ
(b)
x

ρ0
,

∂Ũ
∂Nu
· τy +

(
∂

∂Nu
AkŨ

)
· τy =

τ
(b)
y

ρ0

(1.6)

where τx and τy is the system of unit orthogonal vectors on the sea surface z = 0;
τ
(b)
x and τ

(b)
y are the projections of the bottom friction vector on the axes Ox and Oy,

respectively.
Initial conditions for u, v, T, S, ζ :

u = u0, v = v0, T = T 0, S = S0, ζ = ζ
0 for t = 0 (1.7)

where u0, v0, T 0, S0, ζ 0 are the given functions.
The problem of large-scale sea dynamics in terms of the functions u,v,w,ζ ,T,S

consists in solving problem (1.1)–(1.7). If the functions u,v,ζ ,T,S are found, then
the function w is determined by formula (1.3).

The main features of the numerical model of sea dynamics developed at the
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
are the simultaneous use of the splitting method [30, 18] and the transition to the
σ -coordinate system [27, 30] for (1.1)–(1.7). These two components are used in
tandem to build efficient computer technology for 4DVAR ocean data assimilation.

The transition to the σ -system can be carried out at the stage of considering the
original problem (1.1)–(1.7) before applying suitable splitting schemes and other
numerical procedures [21].

In order to approximate the model (1.1)–(1.7) in time, we use the splitting
method that allows us to represent the solution of the original nonlinear system
by subsequent solutions of simpler problems (steps of the splitting method). Let
us introduce the grid on [0; t̄]: 0 = t0 < t1 < ... < tJ−1 < tJ = t̄, ∆t j = t j− t j−1 and
consider problem (1.1)–(1.7) on (t j−1, t j), assuming that the vector of the approx-
imate solution ϕk ≡ (uk,vk,ξk,Tk,Sk), k = 1,2, ..., j−1 at the previous intervals, is
already defined. To approximate the problem, we use one of the schemes of the total
approximation method [18], which consists in the implementation of the following
steps.

Step 1. Consider the problem

Tt +(U,Grad)T −Div(âT ·Grad T ) = fT in D× (t j−1, t j) (1.8)

under corresponding boundary and initial conditions.
Step 2. Solve the problem

St +(U,Grad)S−Div(âS ·Grad S) = fS in D× (t j−1, t j) (1.9)

under appropriate boundary and initial conditions.
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Step 3. The system

u(1)t +

[
0 −l
l 0

]
u(1)−ggradξ = f− 1

ρ0
grad

Pa +g
z∫

0

ρ1(T̄ , S̄)dz
′


in D× (t j−1, t j)

ξt −div

 H∫
0

Θu(1) dz

= f3 in Ω× (t j−1, t j)

u(1) = u j−1, ξ = ξ j−1 for t = t j−1, u(1)j ≡ u(1)(t j) in D

(1.10)

is solved under corresponding boundary conditions, and the function ξ j ≡ ξ (1) is
taken as an approximation to ξ on (t j−1, t j). Then the following problems are solved: u(2)t +

[
0 − f1(ū)

f1(ū) 0

]
u(2) = 0 in D× (t j−1, t j)

u(2) = u(1.1)j for t = t j−1, u(2)j ≡ u(2)(t j) in D
(1.11)

u(3)t +(U,Grad)u(3)−Div(âu ·Grad)u(3)+(Ak)
2u(3) = 0 in D× (t j−1, t j)

u(3) = u(2) for t = t j−1 in D
(1.12)

where u(3) = (u(3),v(3)) and U(3) = (u(3),w(3)(u(3),v(3))). After solving (1.12), the
vector u(3) ≡ u j ≡ (u j,v j) is taken as an approximation to the exact vector u on
D× (t j−1, t j), and the approximation w j ≡ w(u j,v j) to the vertical component of
the velocity vector is calculated by (1.3) .

When Steps 1–3 are implemented, after the first step we get an approximation
to T , after the second an approximation to S, and after the third step we get an
approximation to u = (u,v) and ξ . Therefore, the subproblems at these steps are
independent of each other and may be solved in parallel.

2. Variational data assimilation
The purpose of data assimilation is to estimate the unknown model inputs: the initial
state of the system, the boundary conditions, the source terms, distributed coeffi-
cients, etc. The problems are formulated as optimal control problems involving cost
functions associated with observations, and the minimization is considered on the
trajectories (solutions) of the model under consideration [6, 7, 11, 15, 16, 19, 22,
24].

We will demonstrate the data assimilation technique for the case when in prob-
lem (1.1)–(1.7) the total heat flux function Q = −νT ∂T/∂ z on ΓS is unknown and
treated as an additional ‘control’. The cost function is related to observations and
has the form:
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J(Q) =
1
2

t̄∫
0

∫
Ω

(Q−Q(0))B−1(Q−Q(0))dΩdt +
1
2

J

∑
j=1

J0, j

J0, j ≡
t j∫

t j−1

∫
Ω

(T |z=0−Tobs)R
−1(T |z=0−Tobs)dΩdt

(2.1)

where Q(0) = Q(0)(x,y, t) is a given functions, Tobs is the function of observations
on the sea surface Ω, R is the observation error covariance operator, B is the back-
ground error covariance operator. The function Q(0) is usually chosen as the first
approximation (so-called ‘background’) for the unknown heat flux Q. The aim of
variational data assimilation is, using Q(0), to find better estimate for Q, consistent
with the model solution and observations, for further modelling and forecast.

We consider the following variational data assimilation problem: Find a solu-
tion to (1.1)–(1.7) and the function Q, such that functional (2.1) takes the minimum
value:

J(Q) = inf
Q

J(Q).

The gradient of the functional J(Q) with respect to Q is defined by the adjoint
state T ∗ as follows:

J′Q = B−1
(

Q−Q(0)
)
+T ∗ on Ω. (2.2)

The necessary optimality condition J′Q = 0 leads to the optimality system, which
determines the solution of the formulated problem of variational data assimilation.
The optimality system includes the direct problem (1.1)–(1.7), the adjoint problem,
and the optimality conditions in the form:

B−1
(

Q−Q(0)
)
+T ∗ = 0 on Ω. (2.3)

The adjoint state T ∗ is the solution of the adjoint problem, which in the case of
applying the splitting method is determined at Step 1 in the form:

−T ∗t −Div(UT ∗)−Div(âT ·Grad T ∗) = 0 in D× (t j−1, t j)

T ∗ = 0 for t = t j

−νT
∂T ∗

∂ z
= R−1(T |z=0−Tobs) on Ω.

(2.4)

The adjoint problem (2.4) involves the observation data Tobs and the observation
error covariance operator R in the boundary condition on the sea surface.

The optimality system that determines the solution of the formulated problem of
variational data assimilation reduces to the sequential solution of the subproblems
on t ∈ (t j−1, t j), j = 1,2, . . . ,J.
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To find an approximate solution of the optimality system, with the determination
of Q by variational assimilation of Tobs we can use the following iterative algorithm.
If Q(k) is the already constructed approximation to Q on (t j−1, t j), then after solving
the forward and adjoint problems with Q ≡ Q(k), the next approximation Q(k+1) is
computed by:

Q(k+1) = Q(k)− γk(B
−1(Q(k)−Q(0))+T ∗) on Ω× (t j−1, t j) (2.5)

with the parameters γk chosen so that the iterative process (2.5) is convergent [3].
After computing Q(k+1), the solution of the direct and adjoint problems is repeated
with the new approximation Q(k+1), and then Q(k+2) is calculated, and so on. Itera-
tions are repeated until a suitable convergence criterion is met.

For example, in some cases one can take the parameters

γk =
1
2

t j∫
t j−1

∫
Ω

(T |z=0−Tobs)R
−1(T |z=0−Tobs)dΩdt

/ t j∫
t j−1

∫
Ω

(T ∗2 )
2|z=0 dΩdt

which may significantly accelerate the convergence of the iterative process [3].
The formulated algorithm allows us to solve the considered four-dimensional

variational data assimilation problem.
In what follows, we will assume that the first approximation (background) func-

tion Q(0) is specified with some error, namely,

Q(0) = Q̄(0)+ξQ

where Q̄(0) is some average (exact) value of the surface flux Q(0), and ξQ can be seen
as a background error. We will assume that the errors ξQ are random and they are
distributed according to the normal law (Gaussian) with zero mathematical expect-
ation and the covariance operator B· = E[(·,ξQ)ξQ], where E is the expectation.
Covariance matrices of background and observation errors play an important role in
variational data assimilation: their inverse matrices are included as weight operators
in the original cost functional [11].

Due to the fact that

E[Q(0)] = E[Q̄(0)]+E[ξQ] = Q̄(0)

we can assume that Q̄(0) is the expectation of the first approximation (background)
function, which can be calculated using the standard formula for mean values.

In the finite-dimensional case, the covariance operator B is a covariance matrix
and is defined by the formula

B = E[ξQξ
T
Q ] = E[(Q(0)− Q̄(0))(Q(0)− Q̄(0))T ].



Variational data assimilation for a sea dynamics model 9

If ξQ = (ξ1, . . . ,ξN)
T , then the elements of the matrix B can be written in the form

b jk = E[(ξ j−Eξ j)(ξk−Eξk)] = E[ξ jξk]−E[ξ j]E[ξk] = E[ξ jξk].

The quantities b jk are called the coefficients of covariance between the jth and kth
coordinates of the random vector ξQ and are denoted by cov(ξ j,ξk).

For j = k we get
b j j = Dξ j = σ

2
j

where Dξ j is the variance of the random variable ξ j (the second central moment of
the distribution):

Dξ j = E[(ξ j−Eξ j)
2] = E[ξ 2

j ]− (E[ξ j])
2

and σ j is the mean square deviation, or standard deviation, with σ j =
√

Dξ j.
Thus, the diagonal elements of the matrix B are the variances Dξ j, and they

play an important role in weighting the cost functional under variational data as-
similation. In practice, variational assimilation often assumes that the matrix B is
diagonal with elements Dξ j, which are calculated based on the statistical proper-
ties of background data. Thus, if ξ (1), . . . ,ξ (n) is a sequence of realizations of the
random variable ξ j, then Dξ j is calculated by the formula:

Dξ j =
1
n

n

∑
i=1

(ξ (i)−E[ξ j])
2

where E[ξ j] is the mathematical expectation (mean of the sample):

E[ξ j] =
1
n

n

∑
i=1

ξ
(i).

By virtue of the assumption EξQ = 0, it is easy to see that DQ(0) = DξQ, therefore,
to calculate the dispersion, one can take the values of the surface flux over a long
observation period as realizations of a random variable. The resulting variances are
the diagonal elements of the covariance matrix B of the first approximation (back-
ground) errors.

3. Numerical experiments for the Black Sea water area
The numerical experiments were performed using the three-dimensional numerical
model of the Black and Azov seas hydrothermodynamics developed at the INM
RAS on the base of the splitting method [29] and supplied with the assimilation
procedure for the sea surface temperature (SST) in order to reconstruct the heat
fluxes Q.

The object of simulation is the water area of the Black and Azov seas. The para-
meters of the considered domain and its geographic coordinates can be described
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in the following way: σ -grid is 306× 200× 27 (the latitude, longitude, and depth,
respectively). The first point of the ‘grid C’ [9] has the coordinates 26.65oE and
40.15oN. The mesh sizes in x and y are constant and equal to 0.05 and 0.036 de-
grees, respectively. The time step is ∆t = 2.5 minutes.

The SST observation data were provided by the ‘See the Sea’ satellite service
being a part of the CKP ‘IKI Monitoring’, which collects and processes various data
on the state of the Earth surface and focuses on working with satellite observations
[17]. The SST data from the VIIRS spectrometer on the SNPP satellite and MODIS
spectrometer on the Aqua and Terra satellites were selected (several measurements
per day at certain points in time) as Tobs in this experiment. The SST data for the
dates from January 1 to June 30, 2019 were recalculated on the numerical model grid
[26]. Meteorological characteristics were used to calculate the atmospheric impact
in the model, including the bulk formulas for calculating turbulent flows on the sea
surface. The values of the mean climatic heat flow Q(0) calculated in the same way
were used in the data assimilation procedure as a background.

When solving problems of variational assimilation of satellite observation data,
the question arises of setting the regularization parameter. One solution to this issue
is to introduce into consideration the background error covariance matrix B−1 that
occurs in the first term of the cost functional (2.1).

To calculate the diagonal elements of the covariance matrix B, we obtained
data on the heat flux on the sea surface. The heat flux on the sea surface was calcu-
lated using Era 5 reanalysis data (www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era5) [13] for the period from 1979 to 2020. The following characteristics
on the sea surface were used for the calculation: latent heat flux; sensible heat flux;
the total flux of shortwave radiation; the total flux of long-wave radiation. For the
problem of calculating the heat flux on the sea surface, the penetrating role of short-
wave radiation was taken into account [14]. The Era 5 data were uploaded with
a temporal resolution of 12 hours, which makes it possible to consider the daily
course of changes, to separate day and night heat fluxes. In Fig. 1, to illustrate the

(a) 12:00 01.01.1979 (day) (b) 00:00 02.01.1979 (night)

Figure 1. Heat flux on the surface of the Black and Azov Seas at 12:00 01.01.1979 (a) and 00:00
02.01.1979 (b), W

/
m2.
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(a) Regularization parameters for
February 28, 2019

(b) Regularization parameters for June 28, 2019

Figure 2. Region of the Black Sea area.

daily course of the heat flux, the data fields of the heat flux on the surface of the
Black and Azov Seas on January 1 (daily) and 2 (night), 1979 are presented.

The axis is directed so that positive values mean that the sea receives heat, neg-
ative values mean that the sea gives off heat (mainly at night). Based on data for
1979–2020 the mean values and variances of the heat flux are calculated from day-
time and nighttime data for each day of the year. The resulting variances are the
diagonal elements b j j of the covariance matrix of first approximation (background)
errors.

In the numerical experiments the value of the regularization parameter calcu-
lated on the basis of the diagonal elements of this covariance matrix sometimes
differs by several orders of magnitude from the previously used constant parameter
B−1 = 5 ·10−5× I, where I is the identity matrix. Note that the regularization para-
meter depends now on coordinates and time. Thus, Figure 2 shows the values of the
parameter calculated on the basis of the matrix B−1 on February 28 and on June
28, 2019.

To confirm the possibility of using B−1 as a regularization parameter, numer-
ical experiments were carried out to solve the problem of variational assimilation of
satellite observation data. The duration of the calculation was six months. The res-
ults of numerical calculations were then compared with observation data obtained
from the Copernicus service (product ID sst eur sst l3s nrt observations 010 009 a)
for the same period of time. Note that the data used in the assimilation procedure are
quasi-operational, that is, assimilated at certain points in time, and the Copernicus
data are average daily data. Therefore, for a correct comparison, the calculation data
were averaged over a day.

Figure 3 shows the calculation results on June 28, 2019. Thus, Figure 3a shows
the average value of the sea surface temperature when calculated by the model
without the assimilation block, Figure 3b shows the data obtained from the Coper-
nicus service, Figure 3c presents the calculated SST based on assimilation with a
constant regularization parameter, and Figure 3d presents the calculated SST based
on assimilation using the background error covariance matrix.
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(a) Model calculation without assimilation
procedure

(b) Average daily observational data of the
Copernicus service

(c) Calculation with assimilation for
B−1 = 5 ·10−5× I

(d) Calculation with assimilation involving B−1

Figure 3. Average SST, June 28, 2019, oC.

Comparing the results of calculations, it can be seen that the model without the
assimilation procedure somewhat underestimates the sea surface temperature in the
considered period of time, and the discrepancy with the observational data can reach
up to 3oC. The use of the data assimilation procedure makes it possible to reduce
this difference to 1–2oC practically throughout the Black and Azov Seas. Note that
the calculations with a constant regularization parameter and those calculated on the
basis of the matrix B−1 showed very close results.

Figure 4 shows sections along 31oE (Fig. 4b), 36oE (Fig. 4c), and 43oN (Fig. 4d)
for sea surface temperature. In all plots, the line with black circles is the calculation
according to the model without the data assimilation block, the blue line is the cal-
culation according to the model with data assimilation and constant regularization
parameter, the green line is the calculation according to the model with assimila-
tion and regularization parameters built on the basis of the matrix B−1, line with
red squares – average daily data from the Copernicus service. Based on the results
presented in Fig. 4, we note that the inclusion of the data assimilation procedure
allows improving the behavior of the model and, after calculation, the SST values
become closer to the observed ones. Note that in the Sea of Azov (see Fig. 4c)
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(a) Cross-sections for SST (b) SST along 31oE

(c) SST along 36oE (d) SST along 43oN

Figure 4. Cross-sections of SST: red square is Copernicus data, black circle – model without assim-
ilation, green line – regularization with B−1, blue line – constant regularization, June 28, 2019, oC.

the calculation results with a constant value of the regularization parameter and the
parameter calculated on the basis of the matrix B−1 turned out to be identical. In
the rest of the study region, they differ by a small amount.

The iterative procedures used for the four-dimensional variational assimilation
of the sea surface temperature in the Black Sea showed good convergence, and no
more than 10 iterations were required to obtain the optimal heat flux Q. In some
experiments, the parameters of the iterative process can be calculated based on the
features of the system itself, and in this case it is possible to achieve convergence of
the process in 3–5 iterations.

Numerical experiments for the Black Sea dynamics model confirmed the effi-
ciency of the presented computational technique and demonstrated that the assimil-
ation improves the predictive properties of the model.
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4. Conclusions
The results on the development of efficient numerical algorithms for problems of
variational assimilation of observation data for a model of sea dynamics are presen-
ted. The algorithms for solving inverse problems to restore the heat fluxes on the sea
surface for the model under consideration are proposed. The algorithms have shown
their efficiency for the models based on the use of the method of splitting with
respect to physical processes and geometric coordinates, which made considered
problems easier at each implementation step.

The research shows the possibility of choosing a regularization parameter based
on the background error covariance matrix. The numerical experiments for the
Black Sea dynamics model have confirmed the efficiency of this approach in the
proposed variational assimilation algorithms to modelling hydrothermodynamics
problems of marine areas and demonstrated a good proximity of the obtained solu-
tions to real observation data.
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